掃描注冊有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓
北京初中數(shù)學(xué)規(guī)律題技巧!初中數(shù)學(xué)診斷中,經(jīng)常出現(xiàn)數(shù)列的找規(guī)律題,本文就此類題的解題方法進(jìn)行探索。2017中考電話:4000-121-121.愛智康小編下面為大家分享北京初中數(shù)學(xué)規(guī)律題技巧!
	
	  北京初中數(shù)學(xué)規(guī)律題技巧
	
	  一、基本方法——看增幅
	
	  (一)如增幅相等(此實為等差數(shù)列):對每個數(shù)和它的前一個數(shù)進(jìn)行比較,如增幅相等,則第n個數(shù)可以表示為:a+(n-1)b,其中a為數(shù)列的先進(jìn)位數(shù),b為增幅,(n-1)b為先進(jìn)位數(shù)到第n位的總增幅。然后再簡化代數(shù)式a+(n-1)b。
	
	  例:4、10、16、22、28……,求第n位數(shù)。
	
	  分析:第二位數(shù)起,每位數(shù)都比前一位數(shù)增加6,增幅相都是6,所以,第n位數(shù)是:4+(n-1)×6=6n-2
	
	  (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數(shù)列)。如增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數(shù)列第n位的數(shù)也有一種通用求法。
	
	  基本思路是:1、求出數(shù)列的第n-1位到第n位的增幅;
	
	  2、求出第1位到第第n位的總增幅;
	
	  3、數(shù)列的第1位數(shù)加上總增幅即是第n位數(shù)。
	
	  舉例說明:2、5、10、17……,求第n位數(shù)。
	
	  分析:數(shù)列的增幅分別為:3、5、7,增幅以同等幅度增加。那么,數(shù)列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:
	
	  [3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
	
	  所以,第n位數(shù)是:2+ n2-1= n2+1
	
	  此解法雖然較煩,但是此類題的通用解法,當(dāng)然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡單的多了。
	
	  (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧。
	
	  二、基本技巧
	
	  (一)標(biāo)出序列號:找規(guī)律的題目,通常按照一定的順序給出一系列量,要求我們根據(jù)這些已知的量找出一般規(guī)律。找出的規(guī)律,通常包序列號。所以,把變量和序列號放在一起加以比較,就比較容易發(fā)現(xiàn)其中的奧秘。
	
	  例如,觀察下列各式數(shù):0,3,8,15,24,……。試按此規(guī)律寫出的第100個數(shù)是 。
	
	  解答這一題,可以先找一般規(guī)律,然后使用這個規(guī)律,出第100個數(shù)。我們把有關(guān)的量放在一起加以比較:
	
	  給出的數(shù):0,3,8,15,24,……。
	
	  序列號: 1,2,3, 4, 5,……。
	
	  容易發(fā)現(xiàn),已知數(shù)的每一項,都等于它的序列號的平方減1。因此,第n項是n2-1,第100項是1002-1。
	
	  (二)公因式法:每位數(shù)分成較小公因式相乘,然后再找規(guī)律,看是不是與n2、n3,或2n、3n,或2n、3n有關(guān)。
	
	  例如:1,9,25,49,(),(),的第n為(2n-1)2
	
	  (三)看例題:
	
	  A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案與3有關(guān)且............即:n3+1
	
	  B:2、4、8、16.......增幅是2、4、8.. .....答案與2的乘方有關(guān) 即:2n
	
	  (四)有的可對每位數(shù)同時減去先進(jìn)位數(shù),成為第二位開始的新數(shù)列,然后用(一)、(二)、(三)技巧找出每位數(shù)與位置的關(guān)系。再在找出的規(guī)律上加上先進(jìn)位數(shù),恢復(fù)到原來。
	
	  例:2、5、10、17、26……,同時減去2后得到新數(shù)列:
	
	  0、3、8、15、24……,
	
	  序列號:1、2、3、4、5
	
	  分析觀察可得,新數(shù)列的第n項為:n2-1,所以題中數(shù)列的第n項為:(n2-1)+2=n2+1
	
	  (五)有的可對每位數(shù)同時加上,或乘以,或除以先進(jìn)位數(shù),成為新數(shù)列,然后,在再找出規(guī)律,并恢復(fù)到原來。
	
	  例 : 4,16,36,64,?,144,196,… ?(先進(jìn)百個數(shù))
	
	  同除以4后可得新數(shù)列:1、4、9、16…,很顯然是位置數(shù)的平方。
	
	  (六)同技巧(四)、(五)一樣,有的可對每位數(shù)同加、或減、或乘、或除同一數(shù)(一般為1、2、3)。當(dāng)然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
	
	  (七)觀察一下,能否把一個數(shù)列的奇數(shù)位置與偶數(shù)位置分開成為兩個數(shù)列,再分別找規(guī)律。
	
	  三、基本步驟
	
	  1、 先看增幅是否相等,如相等,用基本方法(一)解題。
	
	  2、 如不相等,綜合運用技巧(一)、(二)、(三)找規(guī)律
	
	  3、 如不行,就運用技巧(四)、(五)、(六),變換成新數(shù)列,然后運用技巧(一)、(二)、(三)找出新數(shù)列的規(guī)律
	
	  4、 較后,如增幅以同等幅度增加,則用用基本方法(二)解題
	
	  小編推薦:
	
	   
北京初中數(shù)學(xué)規(guī)律題技巧為大家介紹好了,如果大家還有什么問題的話,請直接撥打免費咨詢電話:4000-121-121!有專業(yè)的老師為您解答!
 大家都在看
大家都在看
 限時免費領(lǐng)取
限時免費領(lǐng)取