預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
初一數學學什么(三篇)!在教學時老師常常以問題作為出發(fā)點,選擇的素材密切聯系孩子的現實生活,運用孩子的求知欲,使孩子感到數學就在他們身邊,與現實世界聯系緊密,同時問題情景的設置又具有一定的挑戰(zhàn)性,引發(fā)了孩子的思考。下面為大家分享初一數學學什么(三篇)!希望能夠幫到大家!
初一數學學什么(篇一)
一、代數初步知識。
1.代數式:用運算符號“+-×÷……”連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
(2)數與數相乘,仍應使用“×”乘,不用“·”乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.
二、幾個重要的代數式(m、n表示整數)。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續(xù)整數是:n-1、n、n+1;
(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.
三、初一數學上冊知識點:有理數。
1.有理數:
(1)正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;
(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;
2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
4.少有值:
(1)正數的少有值是其本身,0的少有值是0,負數的少有值是它的相反數;注意:少有值的意義是數軸上表示某數的點離開原點的距離;
(2)|a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|,
5.有理數比大。(1)正數的少有值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,少有值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
四、有理數法則及運算規(guī)律。
(1)同號兩數相加,取相同的符號,并把少有值相加;
(2)異號兩數相加,取少有值較大的符號,并用較大的少有值減去較小的少有值;
(3)一個數與0相加,仍得這個數.
2.有理數加法的運算律:
加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
3.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
4.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把少有值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
5.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
6.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,
7.有理數乘方的法則:
(1)正數的任何次冪都是正數;
五、初一數學上冊知識點:乘方的定義。
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)底數的小數點移動一位,平方數的小數點移動二位.
2.近似數的準確位:一個近似數,四舍五入到那一位,就說這個近似數的準確到那一位.
3.有效數字:從左邊先進個不為零的數字起,到準確的位數止,所有數字,都叫這個近似數的有效數字.
4.混合運算法則:先乘方,后乘除,較后加減;注意:怎樣算簡單,怎樣算準確,是數學的較重要的原則.
5特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.
六、初一數學上冊知識點:整式的加減。
1.單項式:在代數式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數較高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)
是常見的兩個二次三項式.
5.整式:單項式和多項式統(tǒng)稱為整式.
七、整式分類為
1.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.
2.合并同類項法則:系數相加,字母與字母的指數不變.
3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.
4.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.
5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式的較后結果一般應該進行升冪(或降冪)排列.
八、一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的較簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解).
初一數學學什么(篇二)
1 相交線
對頂角相等。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段較短(簡單說成:垂線段較短)。
2 平行線
經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。
3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題。
1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對。
三角形
1 與三角形有關的線段
三角形(triangle)具有穩(wěn)定性。
2 與三角形有關的角
三角形的內角和等于180度。
三角形的一個外角等于與它不相鄰的兩個內角的和。
三角形的一個外角大于與它不相鄰的任何一個內角
3 多邊形及其內角和
n邊形內角和等于:(n-2)•180度
多邊形(polygon)的外角和等于360度。
1 二元一次方程組
方程中含有兩個未知數(x和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程
把兩個二元一次方程合在一起,就組成了一個二元一次方程組
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。
1 不等式
用小于號或大于號表示大小關系的式子,叫做不等式。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式 不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組
初一數學學什么(篇三)
七年級數學知識點歸納(一)
正數與負數
、僬龜担捍笥0的數叫正數。(根據需要,有時在正數前面也加上“+”)
、谪摂担涸谝郧皩W過的0以外的數前面加上負號“—”的數叫負數。與正數具有相反意義。
、0既不是正數也不是負數。0是正數和負數的分界,是先進的中性數。
注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等
七年級數學知識點歸納(二)
有理數的乘方
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
有理數的混合運算法則:先乘方,再乘除,較后加減;同級運算,從左到右進行;如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a <10。
從一個數的左邊先進個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。四舍五入遵從準確到哪一位就從這一位的下一位開始,而不是從數字的末尾往前四舍五入。比如:3.5449準確到0.01就是3.54而不是3.55.
七年級數學知識點歸納(三)
整式加減的一般步驟:
1、如果遇到括號按去括號法則先去括號. 2、結合同類項. 3、合并同類項
2.3整式的乘法法則 :
單項式與單項式相乘,把它們的系數、同底數冪分別相乘,其余字母連同它的指數不變,作為積的因式 ;
單項式和多項式相乘,就是用單項式去乘多項式的每項,再把所得的積相加。
多項式和多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
七年級數學知識點歸納(四)
一元一次方程
1.等式:用“=”號連接而成的式子叫等式.
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程解法的一般步驟:
化簡方程----------分數基本性質
去分母----------同乘(不漏乘)較簡公分母
去括號----------注意符號變化
移項----------變號(留下靠前)
合并同類項--------合并后符號
系數化為1---------除前面
小編推薦:
愛智康初中教育頻道分享的初一數學學什么(三篇)到這里就結束啦,數學學習是一個不斷積累的過程,就像是馬拉松一樣,雖然不需要你要快,但是一定需要你一步一步的去跑,去累積,只有這樣,我們才能逐漸解決各個問題,讓數學學習無后顧之憂。更多有關初中輔導的課程,請直接撥打免費咨詢電話:!
大家都在看