預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
2019年北京市初中數學知識點復習:二次函數知識點總結。同學們在復習的時候,可以多做一些經典的題目,在看書的時候可以總結一些經常考的知識點,這樣會提高復習效率,下面為大家?guī)?/span>2019年北京市初中數學知識點復習:二次函數知識點總結,希望對同學們提供幫助。
想要了解【初三數學知識點】的相關資料,請點擊加入【愛智康初中交流福利群】,并直接向管理員“小康康”索。壑强党踔薪涣鞲@簳欢ㄆ诿赓M發(fā)放學習資料,初中以及中考政策等相關消息,請持續(xù)關注!
2019年北京市初中數學知識點復習:二次函數知識點總結
定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:
y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a
二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線先進的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數) y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。
小編推薦:
這一期的2019年北京市初中數學知識點復習:二次函數知識點總結小編就介紹到這里,希望對有需要的同學提供幫助,同學們在新的學期里要好好學習,認真整理筆記,較后小編祝同學們學業(yè)有成,更多試題輔導,請撥打免費咨詢電話:!
大家都在看