預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
請選擇城市
請選擇意向校區(qū)
請選擇年級
請選擇科目
高中數(shù)學函數(shù)萬能解題技巧!函數(shù)的問題是數(shù)學的一個難點,同學們在學習函數(shù)的時候,很多知識點都是環(huán)環(huán)相扣的,同學們要理清楚思路,打好基礎是關鍵,下面,小編為大家?guī)?span style="color:#f00;">高中數(shù)學函數(shù)萬能解題技巧。
以上是部分資料,點擊下方鏈接領取完整版
點擊領取_高中函數(shù)知識點及解題技巧 預約咨詢請撥打:400-810-2680
三角函數(shù)導數(shù)公式有哪些
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
高中數(shù)學函數(shù)萬能解題技巧就給大家分享到這里,另外學而思學科老師還給大家整理了一份《點擊領取_高中函數(shù)知識點及解題技巧 》。
部分資料截圖如下:
點擊鏈接領取完整版資料:https://jinshuju.net/f/NfUbVN
相關推薦:
文章來源于網(wǎng)絡整理,如有侵權,請聯(lián)系刪除,郵箱fanpeipei@100tal.com